
Wasm Sandbox

The security model of WebAssembly has two important goals: (1) 
protect users from buggy or malicious modules, and (2) provide 
developers with useful primitives and mitigations for developing safe 
applications, within the constraints of (1).

- WebAssembly Design



First Step to Sandboxing



How does Wasm go about this
• Needs to be implemented by the runtime

• A runtime could potentially be implemented to give it full access to 
host



Memory in Wasm
• Linear memory is a continuous buffer of unsigned bytes

• Modules with potentially harmful code are prevented from accessing 
data outside their assigned linear memory space.

• The runtime system constantly monitors the size of each module's 
memory. It checks whether any memory access attempt by a module 
is confined within its pre-allocated memory boundaries.

• A module in WebAssembly is unable to intrude into the memory 
spaces of other modules, the runtime environment, or the operating 
system of the runtime, unless it has been explicitly authorized to do 
so.



Adapted from Aaron Turner



Control-Flow Integrity
Safeguard against:

• Direct function calls: When a program directly calls a function.

• Indirect function calls: When a program calls a function indirectly, 
without specifying the exact target.

• Returns: When a function returns control back to the caller.



Not a free lunch
• Memory Monitoring

• Control-flow integrity

• Unmapped pages

• And more…


	Slide 1: Wasm Sandbox
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7

